Brain exposure to SARS-CoV-2 virions perturbs synaptic homeostasis
Gavriatopoulou, M. et al. Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med. 20, 493–506 (2020).
Article CAS PubMed PubMed Central Google Scholar
Salinas, S. & Simonin, Y. [Neurological damage linked to coronaviruses: SARS-CoV-2 and other human coronaviruses]. Med.Sci. (Paris) 36, 775–782 (2020).
Article PubMed Google Scholar
Koralnik, I. J. & Tyler, K. L. COVID-19: a global threat to the nervous system. Ann. Neurol. 88, 1–11 (2020).
Article CAS PubMed PubMed Central Google Scholar
Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nervous system. Cell 183, 16–27 e11 (2020).
Article CAS PubMed PubMed Central Google Scholar
Helms, J. et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care 24, 491 (2020).
Article PubMed PubMed Central Google Scholar
Varatharaj, A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882 (2020).
Article PubMed PubMed Central Google Scholar
Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611–627 (2020).
Article PubMed PubMed Central Google Scholar
Nagu, P., Parashar, A., Behl, T. & Mehta, V. CNS implications of COVID-19: a comprehensive review. Rev. Neurosci. 32, 219–234 (2021).
Article CAS PubMed Google Scholar
Baker, H. A., Safavynia, S. A. & Evered, L. A. The ‘third wave’: impending cognitive and functional decline in COVID-19 survivors. Br. J. Anaesth. 126, 44–47 (2021).
Article CAS PubMed Google Scholar
Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021).
Article PubMed PubMed Central Google Scholar
Hellmuth, J. et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. J. Neurovirol. 27, 191–195 (2021).
Article CAS PubMed PubMed Central Google Scholar
Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature https://doi.org/10.1038/s41586-022-04569-5 (2022)
Blazhenets, G. et al. Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. J. Nucl. Med. 62, 910–915 (2021).
Article CAS PubMed PubMed Central Google Scholar
Taquet, M. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9, 815–827 (2022).
Article PubMed PubMed Central Google Scholar
Monje, M. & Iwasaki, A. The neurobiology of long COVID. Neuron 110, 3484–3496 (2022).
Article CAS PubMed PubMed Central Google Scholar
Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ramani, A., Pranty, A. I. & Gopalakrishnan, J. Neurotropic effects of SARS-CoV-2 modeled by the human brain organoids. Stem Cell Rep. 16, 373–384 (2021).
Article CAS Google Scholar
Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021).
Article CAS PubMed PubMed Central Google Scholar
Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).
Article CAS PubMed PubMed Central Google Scholar
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
Article CAS PubMed PubMed Central Google Scholar
Brola, W. & Wilski, M. Neurological consequences of COVID-19. Pharmacol. Rep. 74, 1208–1222 (2022).
Article PubMed PubMed Central Google Scholar
Antony, A. R. & Haneef, Z. Systematic review of EEG findings in 617 patients diagnosed with COVID-19. Seizure 83, 234–241 (2020).
Article PubMed PubMed Central Google Scholar
Kubota, T., Gajera, P. K. & Kuroda, N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2020.107682 (2020).
Article PubMed PubMed Central Google Scholar
Lin, L. et al. Electroencephalographic abnormalities are common in COVID-19 and are associated with outcomes. Ann. Neurol. 89, 872–883 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).
Article CAS PubMed PubMed Central Google Scholar
Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol. Psychiatry https://doi.org/10.1038/s41380-022-01786-2 (2022).
Article PubMed PubMed Central Google Scholar
Partiot, E. et al. Organotypic culture of human brain explants as a preclinical model for AI-driven antiviral studies. EMBO Mol. Med. https://doi.org/10.1038/s44321-024-00039-9 (2024).
Article PubMed Google Scholar
O’Sullivan, M. L. et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903–910 (2012).
Article PubMed PubMed Central Google Scholar
Sando, R. & Sudhof, T. C. Latrophilin GPCR signaling mediates synapse formation. Elife 10, e65717 (2021).
Article CAS PubMed PubMed Central Google Scholar
Rothe, J. et al. Involvement of the adhesion GPCRs latrop–hilins in the regulation of insulin release. Cell Rep. 26, 1573–1584 e1575 (2019).
Article PubMed Google Scholar
Ramani, A. et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 39, e106230 (2020).
Article CAS PubMed PubMed Central Google Scholar
Ferren, M. et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat. Commun. 12, 5809 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bauer, L. et al. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 45, 358–368 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zivaljic, M., et al. Poor sensitivity of iPSC-derived neural progenitors and glutamatergic neurons to SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2022.07.25.501370 (2022)
Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 e214 (2019).
Article CAS PubMed PubMed Central Google Scholar
Beckman, D. et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 41, 111573 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848 e843 (2020).
Article CAS PubMed PubMed Central Google Scholar
Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).
Article PubMed PubMed Central Google Scholar
Fernandez-Rodriguez, A. et al. Post-mortem microbiology in sudden death: sampling protocols proposed in different clinical settings. Clin. Microbiol. Infect. 25, 570–579 (2019).
Article CAS PubMed Google Scholar
Burbach, J. P. H. & Meijer, D. H. Latrophilin’s social protein network. Front. Neurosci. 13, 643 (2019).
Article PubMed PubMed Central Google Scholar
Sando, R., Jiang, X. & Sudhof, T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science 363, eaav7969 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bielarz, V. et al. Susceptibility of neuroblastoma and glioblastoma cell lines to SARS-CoV-2 infection. Brain Res. 1758, 147344 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fontes-Dantas, F. L. et al. SARS-CoV-2 spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep. 42, 112189 (2023).
Article CAS PubMed PubMed Central Google Scholar
May, D. G. et al. A BioID-derived proximity interactome for SARS-CoV-2 proteins. Viruses https://doi.org/10.3390/v14030611 (2022).
Bakhache, W., et al. Pharmacological perturbation of intracellular dynamics as a SARS-CoV-2 antiviral strategy. Preprint at bioRxiv https://doi.org/10.1101/2021.09.10.459410 (2021)
Prasad, V. & Bartenschlager, R. A snapshot of protein trafficking in SARS-CoV-2 infection. Biol. Cell. https://doi.org/10.1111/boc.202200073 (2022).
Article PubMed PubMed Central Google Scholar
Jouvenet, N., Goujon, C. & Banerjee, A. Clash of the titans: interferons and SARS-CoV-2. Trends Immunol. 42, 1069–1072 (2021).
Article CAS PubMed PubMed Central Google Scholar
Silva, M. M. et al. MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc. Natl Acad. Sci. USA 116, 5727–5736 (2019).
Article CAS PubMed PubMed Central Google Scholar
Schanzenbacher, C. T., Langer, J. D. & Schuman, E. M. Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses. Elife 7, e33322 (2018).
Article PubMed PubMed Central Google Scholar
Dubes, S. et al. miR-124-dependent tagging of synapses by synaptopodin enables input-specific homeostatic plasticity. EMBO J. 41, e109012 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sun, Z. et al. Mass spectrometry analysis of newly emerging coronavirus HCoV-19 spike protein and human ACE2 reveals camouflaging glycans and unique post-translational modifications. Engineering 7, 1441–1451 (2021).
Article CAS PubMed Google Scholar
Lorenzo, R. et al. Deamidation drives molecular aging of the SARS-CoV-2 spike protein receptor-binding motif. J. Biol. Chem. 297, 101175 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhao, J., Li, J., Xu, S. & Feng, P. Emerging roles of protein deamidation in innate immune signaling. J. Virol. 90, 4262–4268 (2016).
Article CAS PubMed PubMed Central Google Scholar
Arcos-Burgos, M. et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 15, 1053–1066 (2010).
Article CAS PubMed Google Scholar
Lange, M. et al. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 17, 946–954 (2012).
Article CAS PubMed Google Scholar
Regan, S. L. et al. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol. Dis. 158, 105456 (2021).
Article CAS PubMed PubMed Central Google Scholar
Domene, S. et al. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am. J. Med. Genet. B 156B, 11–18 (2011).
Article Google Scholar
Orsini, C. A. et al. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol. Genet. Genomic Med. 4, 322–343 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wallis, D. et al. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res. 1463, 85–92 (2012).
Article CAS PubMed Google Scholar
Li, J. et al. Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nat. Commun. 11, 2140 (2020).
Article CAS PubMed PubMed Central Google Scholar
Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).
Article CAS PubMed PubMed Central Google Scholar
Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569 e557 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chaumont, H. et al. Long-term outcomes after NeuroCOVID: a 6-month follow-up study on 60 patients. Rev. Neurol. 178, 137–143 (2022).
Article CAS PubMed Google Scholar
Coulter, M. E. et al. The ESCRT-III protein CHMP1A mediates secretion of sonic hedgehog on a distinctive subtype of extracellular vesicles. Cell Rep. 24, 973–986 e978 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gee, G. V., Manley, K. & Atwood, W. J. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism. Virology 314, 101–109 (2003).
Article CAS PubMed Google Scholar
Rebendenne, A. et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J. Virol. 95, e02415–e02420 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bouyssie, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36, 3148–3155 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wieczorek, S., Combes, F., Borges, H. & Burger, T. Protein-level statistical analysis of quantitative label-free proteomics data with ProStaR. Methods Mol. Biol. 1959, 225–246 (2019).
Article CAS PubMed Google Scholar
Hulstaert, N. et al. ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. J. Proteome Res. 19, 537–542 (2020).
Article CAS PubMed Google Scholar
Degroeve, S., et al. ionbot: a novel, innovative and sensitive machine learning approach to LC-MS/MS peptide identification. Preprint at bioRxiv https://doi.org/10.1101/2021.07.02.450686 (2021).
Lutz, W. WillyLutz/electrical-analysis-sars-cov-2. GitHub https://github.com/WillyLutz/electrical-analysis-sars-cov-2 (2024).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
Article CAS PubMed Google Scholar