Hot topics close

Brain exposure to SARS-CoV-2 virions perturbs synaptic homeostasis

Brain exposure to SARSCoV2 virions perturbs synaptic homeostasis
Exposing cerebral organoids and post-mortem brain explants to SARS-CoV-2 virus particles alters expression of synaptic proteins and potentially affects synaptic function by blocking LPHN3 and FLRT3 synapses.
  • Gavriatopoulou, M. et al. Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med. 20, 493–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salinas, S. & Simonin, Y. [Neurological damage linked to coronaviruses: SARS-CoV-2 and other human coronaviruses]. Med.Sci. (Paris) 36, 775–782 (2020).

    Article  PubMed  Google Scholar 

  • Koralnik, I. J. & Tyler, K. L. COVID-19: a global threat to the nervous system. Ann. Neurol. 88, 1–11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nervous system. Cell 183, 16–27 e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helms, J. et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care 24, 491 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Varatharaj, A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611–627 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagu, P., Parashar, A., Behl, T. & Mehta, V. CNS implications of COVID-19: a comprehensive review. Rev. Neurosci. 32, 219–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Baker, H. A., Safavynia, S. A. & Evered, L. A. The ‘third wave’: impending cognitive and functional decline in COVID-19 survivors. Br. J. Anaesth. 126, 44–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellmuth, J. et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. J. Neurovirol. 27, 191–195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature https://doi.org/10.1038/s41586-022-04569-5 (2022)

  • Blazhenets, G. et al. Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. J. Nucl. Med. 62, 910–915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taquet, M. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9, 815–827 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Monje, M. & Iwasaki, A. The neurobiology of long COVID. Neuron 110, 3484–3496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani, A., Pranty, A. I. & Gopalakrishnan, J. Neurotropic effects of SARS-CoV-2 modeled by the human brain organoids. Stem Cell Rep. 16, 373–384 (2021).

    Article  CAS  Google Scholar 

  • Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brola, W. & Wilski, M. Neurological consequences of COVID-19. Pharmacol. Rep. 74, 1208–1222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Antony, A. R. & Haneef, Z. Systematic review of EEG findings in 617 patients diagnosed with COVID-19. Seizure 83, 234–241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubota, T., Gajera, P. K. & Kuroda, N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2020.107682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, L. et al. Electroencephalographic abnormalities are common in COVID-19 and are associated with outcomes. Ann. Neurol. 89, 872–883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol. Psychiatry https://doi.org/10.1038/s41380-022-01786-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Partiot, E. et al. Organotypic culture of human brain explants as a preclinical model for AI-driven antiviral studies. EMBO Mol. Med. https://doi.org/10.1038/s44321-024-00039-9 (2024).

    Article  PubMed  Google Scholar 

  • O’Sullivan, M. L. et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903–910 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sando, R. & Sudhof, T. C. Latrophilin GPCR signaling mediates synapse formation. Elife 10, e65717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothe, J. et al. Involvement of the adhesion GPCRs latrop–hilins in the regulation of insulin release. Cell Rep. 26, 1573–1584 e1575 (2019).

    Article  PubMed  Google Scholar 

  • Ramani, A. et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 39, e106230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferren, M. et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat. Commun. 12, 5809 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, L. et al. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 45, 358–368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivaljic, M., et al. Poor sensitivity of iPSC-derived neural progenitors and glutamatergic neurons to SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2022.07.25.501370 (2022)

  • Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 e214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman, D. et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 41, 111573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848 e843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Rodriguez, A. et al. Post-mortem microbiology in sudden death: sampling protocols proposed in different clinical settings. Clin. Microbiol. Infect. 25, 570–579 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Burbach, J. P. H. & Meijer, D. H. Latrophilin’s social protein network. Front. Neurosci. 13, 643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sando, R., Jiang, X. & Sudhof, T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science 363, eaav7969 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielarz, V. et al. Susceptibility of neuroblastoma and glioblastoma cell lines to SARS-CoV-2 infection. Brain Res. 1758, 147344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontes-Dantas, F. L. et al. SARS-CoV-2 spike protein induces TLR4-mediated long-term cognitive dysfunction recapitulating post-COVID-19 syndrome in mice. Cell Rep. 42, 112189 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May, D. G. et al. A BioID-derived proximity interactome for SARS-CoV-2 proteins. Viruses https://doi.org/10.3390/v14030611 (2022).

  • Bakhache, W., et al. Pharmacological perturbation of intracellular dynamics as a SARS-CoV-2 antiviral strategy. Preprint at bioRxiv https://doi.org/10.1101/2021.09.10.459410 (2021)

  • Prasad, V. & Bartenschlager, R. A snapshot of protein trafficking in SARS-CoV-2 infection. Biol. Cell. https://doi.org/10.1111/boc.202200073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouvenet, N., Goujon, C. & Banerjee, A. Clash of the titans: interferons and SARS-CoV-2. Trends Immunol. 42, 1069–1072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, M. M. et al. MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc. Natl Acad. Sci. USA 116, 5727–5736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schanzenbacher, C. T., Langer, J. D. & Schuman, E. M. Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses. Elife 7, e33322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubes, S. et al. miR-124-dependent tagging of synapses by synaptopodin enables input-specific homeostatic plasticity. EMBO J. 41, e109012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Z. et al. Mass spectrometry analysis of newly emerging coronavirus HCoV-19 spike protein and human ACE2 reveals camouflaging glycans and unique post-translational modifications. Engineering 7, 1441–1451 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo, R. et al. Deamidation drives molecular aging of the SARS-CoV-2 spike protein receptor-binding motif. J. Biol. Chem. 297, 101175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Li, J., Xu, S. & Feng, P. Emerging roles of protein deamidation in innate immune signaling. J. Virol. 90, 4262–4268 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcos-Burgos, M. et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 15, 1053–1066 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lange, M. et al. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 17, 946–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Regan, S. L. et al. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol. Dis. 158, 105456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domene, S. et al. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am. J. Med. Genet. B 156B, 11–18 (2011).

    Article  Google Scholar 

  • Orsini, C. A. et al. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol. Genet. Genomic Med. 4, 322–343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis, D. et al. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res. 1463, 85–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Li, J. et al. Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nat. Commun. 11, 2140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569 e557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont, H. et al. Long-term outcomes after NeuroCOVID: a 6-month follow-up study on 60 patients. Rev. Neurol. 178, 137–143 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Coulter, M. E. et al. The ESCRT-III protein CHMP1A mediates secretion of sonic hedgehog on a distinctive subtype of extracellular vesicles. Cell Rep. 24, 973–986 e978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gee, G. V., Manley, K. & Atwood, W. J. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism. Virology 314, 101–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Rebendenne, A. et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J. Virol. 95, e02415–e02420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouyssie, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36, 3148–3155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieczorek, S., Combes, F., Borges, H. & Burger, T. Protein-level statistical analysis of quantitative label-free proteomics data with ProStaR. Methods Mol. Biol. 1959, 225–246 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hulstaert, N. et al. ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. J. Proteome Res. 19, 537–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Degroeve, S., et al. ionbot: a novel, innovative and sensitive machine learning approach to LC-MS/MS peptide identification. Preprint at bioRxiv https://doi.org/10.1101/2021.07.02.450686 (2021).

  • Lutz, W. WillyLutz/electrical-analysis-sars-cov-2. GitHub https://github.com/WillyLutz/electrical-analysis-sars-cov-2 (2024).

  • Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Similar news
    News Archive
    • Rectal cancer
      Rectal cancer
      Exercise associated with benefit to patients with advanced colorectal cancer
      14 Aug 2019
      2
    • Warehouse management system
      Warehouse management system
      ShipBob Announces Proprietary Warehouse Management Software Available for Hybrid, In-House Fulfillment
      6 Jul 2022
      1
    • N95 mask
      N95 mask
      Omicron is forcing many Americans to dump their cloth masks for N95s. Should Australians follow?
      11 Jan 2022
      8
    • Coal
      Coal
      China to implement zero tariffs on coal imports to the end 2023
      10 Jul 2024
      28
    • Wrinkles the Clown
      Wrinkles the Clown
      Who is Wrinkles the Clown? Viewers terrified by creepy trailer for new documentary
      19 Sep 2019
      2
    This week's most popular news