Hot topics close

Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene

Ocean cavity regime shift reversed West Antarctic grounding line retreat in 
the late Holocene
Using ice sheet model and glacio-isostatic adjustment model simulations and paleoclimate proxies, this work demonstrates that the most likely cause of past West Antarctic grounding-line reversal was a regime shift from a warm to cold ocean cavity.
  • Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  ADS  CAS  Google Scholar 

  • Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge University Press, 2021).

  • Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bradley, S. L., Hindmarsh, R. C., Whitehouse, P. L., Bentley, M. J. & King, M. A. Low post-glacial rebound rates in the Weddell sea due to late Holocene ice-sheet readvance. Earth Planet. Sci. Lett. 413, 79–89 (2015).

    Article  ADS  CAS  Google Scholar 

  • Johnson, J. S. et al. Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica. Cryosphere 16, 1543–1562 (2022).

    Article  ADS  Google Scholar 

  • Jones, R. S. et al. Stability of the Antarctic ice sheet during the pre-industrial Holocene. Nat. Rev. Earth Environ. 3, 500–515 (2022).

    Article  ADS  Google Scholar 

  • Balco, G. et al. Reversible ice sheet thinning in the Amundsen sea embayment during the late Holocene. Cryosphere 17, 1787–1801 (2023).

    Article  ADS  Google Scholar 

  • Venturelli, R. et al. Mid-Holocene grounding line retreat and readvance at Whillans ice stream, west Antarctica. Geophys. Res. Lett. 47, e2020GL088476 (2020).

    Article  ADS  Google Scholar 

  • Venturelli, R. A. et al. Constraints on the timing and extent of deglacial grounding line retreat in west Antarctica. AGU Adv. 4, e2022AV000846 (2023).

    Article  ADS  Google Scholar 

  • Neuhaus, S. U. et al. Did Holocene climate changes drive West Antarctic grounding line retreat and readvance? Cryosphere 15, 4655–4673 (2021).

    Article  ADS  Google Scholar 

  • Kingslake, J. et al. Extensive retreat and re-advance of the west antarctic ice sheet during the Holocene. Nature 558, 430–434 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pittard, M. L., Whitehouse, P. L., Bentley, M. J. & Small, D. An ensemble of antarctic deglacial simulations constrained by geological observations. Quat. Sci. Rev. 298, 107800 (2022).

    Article  Google Scholar 

  • Lowry, D. P., Golledge, N. R., Bertler, N. A., Jones, R. S. & McKay, R. Deglacial grounding-line retreat in the Ross embayment, Antarctica, controlled by ocean and atmosphere forcing. Sci. Adv. 5, eaav8754 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Joughin, I. & Tulaczyk, S. Positive mass balance of the Ross ice streams, west Antarctica. Science 295, 476–480 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rignot, E. et al. Four decades of antarctic ice sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 116, 1095–1103 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Seroussi, H. et al. Insights into the vulnerability of antarctic glaciers from the ismip6 ice sheet model ensemble and associated uncertainty. Cryosphere 17, 5197–5217 (2023).

    Article  ADS  Google Scholar 

  • Stevens, C. et al. Ocean mixing and heat transport processes observed under the Ross ice shelf control its basal melting. Proc. Natl. Acad. Sci. USA 117, 16799–16804 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendersie, S., Williams, M. J., Langhorne, P. J. & Robertson, R. The density-driven winter intensification of the Ross sea circulation. J. Geophys. Res. Oceans 123, 7702–7724 (2018).

    Article  ADS  Google Scholar 

  • Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tinto, K. et al. Ross ice shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nat. Geosci. 12, 441–449 (2019).

    Article  ADS  CAS  Google Scholar 

  • Mezgec, K. et al. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat. Commun. 8, 1334 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashley, K. E. et al. Mid-holocene antarctic sea-ice increase driven by marine ice sheet retreat. Climate 17, 1–19 (2021).

    Google Scholar 

  • Barletta, V. R. et al. Observed rapid bedrock uplift in Amundsen sea embayment promotes ice-sheet stability. Science 360, 1335–1339 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid earth change and the evolution of the Antarctic ice sheet. Nat. Commun. 10, 503 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivins, E., van der Wal, W., Wiens, D., Lloyd, A. & Caron, L. Antarctic upper mantle rheology. Geol. Soc. Lond. Mem. 56, M56–2020 (2022).

    Google Scholar 

  • Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level–ii. numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).

    Article  ADS  Google Scholar 

  • Han, H. K., Gomez, N. & Wan, J. X. W. Capturing the interactions between ice sheets, sea level and the solid earth on a range of timescales: a new “time window” algorithm. Geosci. Model Dev. 15, 1355–1373 (2022).

    Article  ADS  Google Scholar 

  • Bueler, E. & Brown, J. Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. J. Geophys. Res. Earth Surf. 114, F03008 (2009).

  • Martin, M. A. et al. The Potsdam parallel ice sheet model (pism-pik)—Part 2: dynamic equilibrium simulation of the Antarctic ice sheet. Cryosphere 5, 727–740 (2011).

  • Golledge, N. R. et al. Retreat of the antarctic ice sheet during the last interglaciation and implications for future change. Geophys. Res. Lett. 48, e2021GL094513 (2021).

    Article  ADS  Google Scholar 

  • Gomez, N., Latychev, K. & Pollard, D. A coupled ice sheet–sea level model incorporating 3d earth structure: variations in Antarctica during the last deglacial retreat. J. Clim. 31, 4041–4054 (2018).

    Article  ADS  Google Scholar 

  • Lingle, C. S. & Clark, J. A. A numerical model of interactions between a marine ice sheet and the solid earth: application to a west antarctic ice stream. J. Geophys. Res. Oceans 90, 1100–1114 (1985).

    Article  ADS  Google Scholar 

  • Bueler, E., Lingle, C. S. & Brown, J. Fast computation of a viscoelastic deformable earth model for ice-sheet simulations. Ann. Glaciol. 46, 97–105 (2007).

    Article  ADS  Google Scholar 

  • Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 1: boundary conditions and climatic forcing. Cryosphere 14, 599–632 (2020).

    Article  ADS  Google Scholar 

  • Fudge, T. J. et al. Variable relationship between accumulation and temperature in west Antarctica for the past 31,000 years. Geophys. Res. Lett. 43, 3795–3803 (2016).

    Article  ADS  Google Scholar 

  • Van Wessem, J. et al. Improved representation of east antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol. 60, 761–770 (2014).

    Article  Google Scholar 

  • Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for bølling-allerød warming. Science 325, 310–314 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  • He, F. et al. Northern hemisphere forcing of southern hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pollard, D. & DeConto, R. M. Modelling west antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Clark, P. U. et al. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature 577, 660–664 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lowry, D. P., Golledge, N. R., Menviel, L. & Bertler, N. A. Deglacial evolution of regional antarctic climate and southern ocean conditions in transient climate simulations. Climate 15, 189–215 (2019).

    Google Scholar 

  • He, F. & Clark, P. U. Freshwater forcing of the atlantic meridional overturning circulation revisited. Nat. Clim. Change 12, 449–454 (2022).

    Article  ADS  Google Scholar 

  • Todd, C., Stone, J., Conway, H., Hall, B. & Bromley, G. Late quaternary evolution of reedy glacier, Antarctica. Quat. Sci. Rev. 29, 1328–1341 (2010).

    Article  ADS  Google Scholar 

  • Spector, P. et al. Rapid early-Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).

    Article  ADS  Google Scholar 

  • Hillebrand, T. R. et al. Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea. Cryosphere 15, 3329–3354 (2021).

    Article  ADS  Google Scholar 

  • Stutz, J. et al. Inland thinning of Byrd glacier, Antarctica, during Ross ice shelf formation. Earth Surf. Process. Landf. 48, 3363–3380 (2023).

  • Xu, Q., Yang, L., Gao, Y., Sun, L. & Xie, Z. 6,000-year reconstruction of modified circumpolar deep water intrusion and its effects on sea ice and penguin in the Ross Sea. Geophys. Res. Lett. 48, e2021GL094545 (2021).

    Article  ADS  Google Scholar 

  • Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat. Geosci. 3, 850–853 (2010).

    Article  ADS  CAS  Google Scholar 

  • Larour, E. et al. Slowdown in antarctic mass loss from solid earth and sea-level feedbacks. Science 364, eaav7908 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gomez, N., Pollard, D. & Mitrovica, J. X. A 3-d coupled ice sheet–sea level model applied to Antarctica through the last 40 ky. Earth Planet. Sci. Lett. 384, 88–99 (2013).

    Article  ADS  CAS  Google Scholar 

  • Gomez, N., Weber, M. E., Clark, P. U., Mitrovica, J. X. & Han, H. K. Antarctic ice dynamics amplified by northern hemisphere sea-level forcing. Nature 587, 600–604 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hall, B. L. & Denton, G. H. New relative sea-level curves for the southern Scott coast, Antarctica: evidence for Holocene deglaciation of the western Ross Sea. J. Quat. Sci. 14, 641–650 (1999).

    Article  Google Scholar 

  • Baroni, C. & Hall, B. L. A new Holocene relative sea-level curve for Terra Nova Bay, Victoria land, Antarctica. J. Quat. Sci. 19, 377–396 (2004).

    Article  Google Scholar 

  • Briggs, R. D. & Tarasov, L. How to evaluate model-derived deglaciation chronologies: a case study using Antarctica. Quat. Sci. Rev. 63, 109–127 (2013).

    Article  ADS  Google Scholar 

  • Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hamilton, G. S. Mass balance and accumulation rate across siple dome, west Antarctica. Ann. Glaciol. 35, 102–106 (2002).

    Article  ADS  Google Scholar 

  • Bodart, J. A. et al. High mid-holocene accumulation rates over west Antarctica inferred from a pervasive ice-penetrating radar reflector. Cryosphere 17, 1497–1512 (2023).

    Article  ADS  Google Scholar 

  • Steig, E. J. et al. Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka. Ann. Glaciol. 27, 305–310 (1998).

    Article  ADS  CAS  Google Scholar 

  • Hall, B. L. et al. Widespread southern elephant seal occupation of the Victoria land coast implies a warmer-than-present Ross Sea in the mid-to-late Holocene. Quat. Sci. Rev. 303, 107991 (2023).

    Article  Google Scholar 

  • Jones, T. R. et al. Seasonal temperatures in west Antarctica during the Holocene. Nature 613, 292–297 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazel, J. E. & Stewart, A. L. Bistability of the Filchner-ronne ice shelf cavity circulation and basal melt. J. Geophys. Res. Oceans 125, e2019JC015848 (2020).

    Article  ADS  Google Scholar 

  • Hellmer, H. H., Kauker, F., Timmermann, R. & Hattermann, T. The fate of the southern Weddell sea continental shelf in a warming climate. J. Clim. 30, 4337–4350 (2017).

    Article  ADS  Google Scholar 

  • Daae, K. et al. Necessary conditions for warm inflow toward the Filchner ice shelf, Weddell sea. Geophys. Res. Lett. 47, e2020GL089237 (2020).

    Article  ADS  Google Scholar 

  • Siahaan, A. et al. The antarctic contribution to 21st-century sea-level rise predicted by the UK earth system model with an interactive ice sheet. Cryosphere 16, 4053–4086 (2022).

    Article  ADS  Google Scholar 

  • Melis, R. et al. Last glacial maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett ridge. J. Micropalaeontol. 40, 15–35 (2021).

    Article  ADS  Google Scholar 

  • Piccione, G. et al. Subglacial precipitates record antarctic ice sheet response to late Pleistocene millennial climate cycles. Nat. Commun. 13, 5428 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, K. M. et al. Sensitivity of Holocene east antarctic productivity to subdecadal variability set by sea ice. Nat. Geosci. 14, 762–768 (2021).

    Article  ADS  CAS  Google Scholar 

  • Crosta, X. et al. Antarctic sea ice over the past 130 000 years–part 1: a review of what proxy records tell us. Climate 18, 1729–1756 (2022).

    Google Scholar 

  • Ji, F. et al. Variations of the effective elastic thickness over the Ross Sea and Transantarctic mountains and implications for their structure and tectonics. Tectonophysics 717, 127–138 (2017).

    Article  ADS  Google Scholar 

  • Chen, B., Haeger, C., Kaban, M. K. & Petrunin, A. G. Variations of the effective elastic thickness reveal tectonic fragmentation of the antarctic lithosphere. Tectonophysics 746, 412–424 (2018).

    Article  ADS  Google Scholar 

  • Tankersley, M. D., Horgan, H. J., Siddoway, C. S., Caratori Tontini, F. & Tinto, K. J. Basement topography and sediment thickness beneath Antarctica’s Ross ice shelf. Geophys. Res. Lett. 49, e2021GL097371 (2022).

    Article  ADS  Google Scholar 

  • Lee, S.-K. et al. Human-induced changes in the global meridional overturning circulation are emerging from the southern ocean. Commun. Earth Environ. 4, 69 (2023).

    Article  ADS  Google Scholar 

  • Roach, L. A. et al. Antarctic sea ice area in cmip6. Geophys. Res. Lett. 47, e2019GL086729 (2020).

    Article  ADS  Google Scholar 

  • Feldmann, J., Albrecht, T., Khroulev, C., Pattyn, F. & Levermann, A. Resolution-dependent performance of grounding line motion in a shallow model compared with a full-stokes model according to the mismip3d intercomparison. J. Glaciol. 60, 353–360 (2014).

    Article  ADS  Google Scholar 

  • Levermann, A. et al. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere 6, 273–286 (2012).

    Article  ADS  Google Scholar 

  • Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

  • Fudge, T. J. et al. Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years. Geophys. Res. Lett. 43, 3795–3803 (2016).

  • Hellmer, H. H. & Olbers, D. J. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci. 1, 325–336 (1989).

    Article  ADS  Google Scholar 

  • Bernales, J., Rogozhina, I. & Thomas, M. Melting and freezing under antarctic ice shelves from a combination of ice-sheet modelling and observations. J. Glaciol. 63, 731–744 (2017).

    Article  ADS  Google Scholar 

  • Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Imbrie, J. D. & McIntyre, A. Specmap time scale developed by Imbrie et al. 1984 based on normalized planktonic records (normalized O-18 vs time, specmap. 017) [dataset]. PANGAEA. https://doi.org/10.1594/PANGAEA.441706 (2006).

  • Clark, P. U. & Huybers, P. Interglacial and future sea level. Nature 462, 856–857 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stanford, J. D. et al. Sea-level probability for the last deglaciation: a statistical analysis of far-field records. Glob. Planet. Change 79, 193–203 (2011).

    Article  ADS  Google Scholar 

  • Deschamps, P. et al. Ice-sheet collapse and sea-level rise at the bølling warming 14,600 years ago. Nature 483, 559–564 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lowry, D. P. et al. Geologic controls on ice sheet sensitivity to deglacial climate forcing in the Ross Embayment, Antarctica. Quat. Sci. Adv. 1, 100002 (2020).

    Article  Google Scholar 

  • Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 2: parameter ensemble analysis. Cryosphere 14, 633–656 (2020).

  • Gomez, N., Mitrovica, J. X., Tamisiea, M. E. & Clark, P. U. A new projection of sea level change in response to collapse of marine sectors of the Antarctic ice sheet. Geophys. J. Int. 180, 623–634 (2010).

    Article  ADS  Google Scholar 

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  • Peltier, W. R. Global glacial isostasy and the surface of the ice-age earth: the ice-5g (vm2) model and grace. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  ADS  CAS  Google Scholar 

  • Baggenstos, D. et al. A horizontal ice core from Taylor glacier, its implications for antarctic climate history, and an improved Taylor dome ice core time scale. Paleoceanogr. Paleoclimatol. 33, 778–794 (2018).

    Article  ADS  Google Scholar 

  • Similar news
    News Archive