Hot topics close

Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID ...

Precision nutrition to reset virusinduced human metabolic reprogramming 
and dysregulation HMRD in longCOVID
npj Science of Food - Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID
  • Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan, S. et al. In the wake of the pandemic: Preparing for long covid [internet]. National Center for Biotechnology Information Available at: https://pubmed.ncbi.nlm.nih.gov/33877759/ (Accessed: 27th March 2024).

  • Coronavirus cases: Worldometer Available at: https://www.worldometers.info/coronavirus/ (Accessed: 27th March 2024).

  • Hallek, M. et al. Post-COVID syndrome. Dtsch. Arztebl. Int. 120, 48–55 (2023).

    PubMed  PubMed Central  Google Scholar 

  • Davis, H. E. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38, 101019 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornstein, S. R. et al. Long-COVID, metabolic and endocrine disease. Horm. Metab. Res. 54, 562–566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y. & Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 10, 311–321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedor, C. et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat. Commun. 13, 5104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, N. W. et al. Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Front. Neurol. 13, 1012668 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S. H. et al. New-onset diabetes after COVID-19. J. Clin. Endocrinol. Metab. 108, e1164–e1174 (2023).

    Article  PubMed  Google Scholar 

  • Lopez, C., Kim, J., Pandey, A., Huang, T. & DeLoughery, T. G. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br. J. Haematol. 190, 31–32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demko, Z. et al. Post-acute sequelae of SARS-COV-2 (PASC) impact quality of life at 6, 12 and 18 months post-infection. https://doi.org/10.1101/2022.08.08.22278543 (2022).

  • Liu, X. et al. SARS-CoV-2-host proteome interactions for antiviral drug discovery. Mol. Syst. Biol. 17, e10396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. et al. In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nat. Commun. 12, 5695 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburton, P. E. & Sebra, R. P. Long-read DNA sequencing: recent advances and remaining challenges. Annu. Rev. Genom. Hum. Genet 24, 109–132 (2023).

    Article  CAS  Google Scholar 

  • Banerjee, A. K. et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell 183, 1325–1339.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. et al. Virus-host interactome and proteomic survey reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. Med 2, 99–112.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yang, S. L. et al. Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions. Nat. Commun. 12, 5113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z. et al. Interactomes of SARS-CoV-2 and human coronaviruses reveal host factors potentially affecting pathogenesis. EMBO J. 40, e107776 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T. et al. COVID-19 metabolism: mechanisms and therapeutic targets. MedComm 3, e157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu, A. S. et al. SARS-COV-2-induced host metabolic reprogram (HMR): Nutritional Interventions for Global Management of COVID-19 and post-acute sequelae of covid-19 (PASC). J. Food Bioactives 18, (2022).

  • Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gussow, A. B. et al. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc. Natl Acad. Sci. USA 117, 15193–15199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Lai, S., Gao, G. F. & Shi, W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 600, 408–418 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sicari, D., Chatziioannou, A., Koutsandreas, T., Sitia, R. & Chevet, E. Role of the early secretory pathway in SARS-CoV-2 infection. J. Cell Biol. 219, e202006005 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu, S. A. G., Clemens, R. A. & Naidu, A. S. SARS-CoV-2 infection dysregulates host iron (Fe)-redox homeostasis (Fe-R-H): role of Fe-redox regulators, ferroptosis inhibitors, anticoagulants, and iron-chelators in COVID-19 control. J. Diet. Suppl. 20, 312–371 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Turner, S. et al. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 34, 321–344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, C., Zhong, Q. & Gao, G. F. Overview of SARS-CoV-2 genome-encoded proteins. Sci. China Life Sci. 65, 280–294 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 12, 372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donoghue, S. I. et al. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol. Syst. Biol. 17, e10079 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, S. et al. The SARS-CoV-2 RNA interactome. Mol. Cell 81, 2838–2850.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simeoni, M., Cavinato, T., Rodriguez, D. & Gatfield, D. I(nsp1)ecting SARS-CoV-2-ribosome interactions. Commun. Biol. 4, 715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y. et al. A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat. Biotechnol. 41, 128–139 (2023).

    Article  PubMed  Google Scholar 

  • Kee, J. et al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 610, 381–388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B. et al. Allosteric activation of SARS-CoV-2 RNA-dependent RNA polymerase by remdesivir triphosphate and other phosphorylated nucleotides. mBio 12, e0142321 (2021).

    Article  PubMed  Google Scholar 

  • Zhang, Y. et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat. Commun. 12, 1676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripoli, M. et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J. Virol. 84, 647–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Bera, S. C. et al. The nucleotide addition cycle of the SARS-CoV-2 polymerase. Cell Rep. 36, 109650 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias, S. S. G. et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 16, e1009127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casari, I., Manfredi, M., Metharom, P. & Falasca, M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog. Lipid Res. 82, 101092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Beneit, F., Raškevičius, V., Skeberdis, V. A. & Bordel, S. A metabolic modeling approach reveals promising therapeutic targets and antiviral drugs to combat COVID-19. Sci. Rep. 11, 11982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardacci, R. et al. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis. 12, 263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi, K. H. & McCullagh, J. S. O. A lipidomic view of SARS-CoV-2. Biosci. Rep. 41, BSR20210953 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper, P. L. COVID-19 and heme oxygenase: novel insight into the disease and potential therapies. Cell Stress Chaperones 25, 707–710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, D., Wasan, H. & Reeta, K. H. Heme oxygenase-1 modulation: a potential therapeutic target for COVID-19 and associated complications. Free Radic. Biol. Med. 161, 263–271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza, J. A., González, P. A. & Kalergis, A. M. Modulation of antiviral immunity by heme oxygenase-1. Am. J. Pathol. 187, 487–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Paul, B. D., Lemle, M. D., Komaroff, A. L. & Snyder, S. H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl Acad. Sci. USA 118, e2024358118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaundal, R. K., Kalvala, A. K. & Kumar, A. Neurological implications of COVID-19: role of redox imbalance and mitochondrial dysfunction. Mol. Neurobiol. 58, 4575–4587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y.-P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, T. et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J. Proteome Res. 19, 4455–4469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, H. T., Cheung, V. & Salamango, D. J. Decoupling SARS-CoV-2 ORF6 localization and interferon antagonism. J. Cell Sci. 135, jcs259666 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Wang, J., Wang, L., Aliyari, S. & Cheng, G. SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Cell Mol. Immunol. 19, 872–882 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, J. P. & Liu, S.-L. Role of host factors in SARS-CoV-2 entry. J. Biol. Chem. 297, 100847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343–355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, R., Wu, L.-A., Wang, Q., Qi, J. & Gao, G. F. Cell entry by SARS-CoV-2. Trends Biochem Sci. 46, 848–860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo, R. & Bugge, T. H. Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu. Rev. Cell Dev. Biol. 27, 213–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016–1035.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadanec, L. K. et al. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J. Mol. Sci. 22, 992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861–865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z.-L. & Buck, M. Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of Spike protein S1 and S2. Biophys. J. 120, 2828–2837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock, T. P. et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol 6, 899–909 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc. Natl Acad. Sci. USA 118, e2109905118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker, G. R., Daniel, S. & Millet, J. K. Coronavirus entry: how we arrived at SARS-CoV-2. Curr. Opin. Virol. 47, 113–120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragia, G. & Manolopoulos, V. G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharm. 76, 1623–1630 (2020).

    Article  CAS  Google Scholar 

  • Benton, D. J. et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbar Saadat, Y., Hosseiniyan Khatibi, S. M., Zununi Vahed, S. & Ardalan, M. Host serine proteases: a potential targeted therapy for COVID-19 and influenza. Front Mol. Biosci. 8, 725528 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essalmani, R. et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity. J. Virol. 96, e0012822 (2022).

    Article  PubMed  Google Scholar 

  • Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Vankadari, N. Structure of furin protease binding to SARS-CoV-2 spike glycoprotein and implications for potential targets and virulence. J. Phys. Chem. Lett. 11, 6655–6663 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limburg, H. et al. TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes. J. Virol. 93, e00649–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, M.-M. et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target Ther. 6, 134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020).

    Article  PubMed  Google Scholar 

  • Sender, R. et al. The total number and mass of SARS-CoV-2 virions. Proc. Natl Acad. Sci. USA 118, e2024815118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folgueira, M. D., Luczkowiak, J., Lasala, F., Pérez-Rivilla, A. & Delgado, R. Prolonged SARS-CoV-2 cell culture replication in respiratory samples from patients with severe COVID-19. Clin. Microbiol. Infect. 27, 886–891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J. et al. The kinetics of viral load and antibodies to SARS-CoV-2. Clin. Microbiol. Infect. 26, 1690.e1–1690.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wong, D. W. L. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells 10, 1900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres, P. S. et al. High SARS-CoV-2 viral load in urine sediment correlates with acute kidney injury and poor COVID-19 outcome. J. Am. Soc. Nephrol. 32, 2517–2528 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, W. et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 24, 422 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Obach, M. et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. 279, 53562–53570 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Palsson-McDermott, E. M. & O’Neill, L. A. J. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays 35, 965–973 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Ferraro, E., Germanò, M., Mollace, R., Mollace, V. & Malara, N. HIF-1, the Warburg effect, and macrophage/microglia polarization potential role in COVID-19 pathogenesis. Oxid. Med. Cell Longev. 2021, 8841911 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Mehrzadi, S., Karimi, M. Y., Fatemi, A., Reiter, R. J. & Hosseinzadeh, A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharm. Ther. 224, 107825 (2021).

    Article  CAS  Google Scholar 

  • Jahani, M., Dokaneheifard, S. & Mansouri, K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J. Inflamm. (Lond.) 17, 33 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Marchetti, M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann. Hematol. 99, 1701–1707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debuc, B. & Smadja, D. M. Is COVID-19 a new hematologic disease? Stem Cell Rev. Rep. 17, 4–8 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Edeas, M., Saleh, J. & Peyssonnaux, C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int. J. Infect. Dis. 97, 303–305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Lan, C. et al. Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood 105, 4527–4531 (2005).

    Article  PubMed  Google Scholar 

  • Bellmann-Weiler, R. et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 Infection. J. Clin. Med 9, 2429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, Q., Wang, B. & Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 80, 607–613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhoberac, B. B. What can cellular redox, iron, and reactive oxygen species suggest about the mechanisms and potential therapy of COVID-19? Front. Cell Infect. Microbiol. 10, 569709 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, N. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 18, 1094–1099 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankun, J., Landeta, P., Pretorius, E., Skrzypczak-Jankun, E. & Lipinski, B. Unusual clotting dynamics of plasma supplemented with iron(III). Int J. Mol. Med. 33, 367–372 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, D.-W. et al. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: a sentinel? Clin. Chim. Acta 508, 122–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergamaschi, G. et al. Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin. Exp. Med. 21, 239–246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagener, F. A. D. T. G., Pickkers, P., Peterson, S. J., Immenschuh, S. & Abraham, N. G. Targeting the heme-heme oxygenase system to prevent severe complications following COVID-19 infections. Antioxid. (Basel) 9, 540 (2020).

    Article  CAS  Google Scholar 

  • Cheng, C. et al. The incubation period of COVID-19: a global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients. Infect. Dis. Poverty 10, 119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauer, S. A. et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med .172, 577–582 (2020).

    Article  PubMed  Google Scholar 

  • Wu, Y. et al. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis. JAMA Netw. Open 5, e2228008 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Samrah, S. M. et al. Viral clearance course of COVID-19 outbreaks. J. Multidiscip. Health 14, 555–565 (2021).

    Article  Google Scholar 

  • Hirai, N. et al. Factors associated with viral clearance periods from patients with COVID-19: a retrospective observational cohort study. J. Infect. Chemother. 27, 864–868 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yang, M. & Lai, C. L. SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement? Cell Death Discov. 6, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung, K. S. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a hong kong cohort: systematic review and meta-analysis. Gastroenterology 159, 81–95 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Mao, L. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020).

    Article  PubMed  Google Scholar 

  • Morris, A. Effects of pancreatic SARS-CoV-2 infection identified. Nat. Rev. Endocrinol. 17, 192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Filippo, L., Doga, M., Frara, S. & Giustina, A. Hypocalcemia in COVID-19: prevalence, clinical significance and therapeutic implications. Rev. Endocr. Metab. Disord. 23, 299–308 (2022).

    Article  PubMed  Google Scholar 

  • Deodatus, J. A. et al. Lower plasma calcium associated with COVID-19, but not with disease severity: a two-centre retrospective cohort study. Infect. Dis. (Lond.) 54, 90–98 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Alayash, A. I. The impact of COVID-19 infection on oxygen homeostasis: a molecular perspective. Front. Physiol. 12, 711976 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, P. et al. Ectopic expression of SARS-CoV-2 S and ORF-9B proteins alters metabolic profiles and impairs contractile function in cardiomyocytes. Front. Cell Dev. Biol. 11, 1110271 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hugon, J. Long COVID: does SARS-CoV-2 induce lingering brain lesions? Eur. J. Neurol. 30, 1165–1166 (2023).

    Article  PubMed  Google Scholar 

  • Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and multiorgan response. Curr. Probl. Cardiol. 45, 100618 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yelin, D. et al. Long-term consequences of COVID-19: research needs. Lancet Infect. Dis. 20, 1115–1117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. et al. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat. Med. 29, 226–235 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. et al. Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long COVID: a meta-analysis and systematic review. J. Infect. Dis. 226, 1593–1607 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayoubkhani, D. et al. Risk of long COVID in people infected with severe acute respiratory syndrome coronavirus 2 after 2 doses of a coronavirus disease 2019 vaccine: community-based, matched cohort study. Open Forum Infect. Dis. 9, ofac464 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nalbandian, A., Desai, A. D. & Wan, E. Y. Post-COVID-19 condition. Annu. Rev. Med. 74, 55–64 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaweethai, T. et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 329, 1934 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudre, C. H. et al. Attributes and predictors of long COVID. Nat. Med. 27, 626–631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong, S. J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond.) 53, 737–754 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, M. et al. Spinal manipulation for the management of cervicogenic headache: a systematic review and meta-analysis. Eur. J. Pain. 24, 1687–1702 (2020).

    Article  PubMed  Google Scholar 

  • Garrigues, E. et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 81, e4–e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stavem, K., Ghanima, W., Olsen, M. K., Gilboe, H. M. & Einvik, G. Persistent symptoms 1.5-6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax 76, 405–407 (2021).

    Article  PubMed  Google Scholar 

  • Lai, C.-C. et al. Long COVID: An inevitable sequela of SARS-CoV-2 infection. J. Microbiol. Immunol. Infect. 56, 1–9 (2023).

    Article  PubMed  Google Scholar 

  • Mizrahi, B. et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study. BMJ 380, e072529 (2023).

    Article  PubMed  Google Scholar 

  • Koc, H. C., Xiao, J., Liu, W., Li, Y. & Chen, G. Long COVID and its management. Int J. Biol. Sci. 18, 4768–4780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crook, H., Raza, S., Nowell, J., Young, M. & Edison, P. Long covid-mechanisms, risk factors, and management. BMJ 374, n1648 (2021).

    Article  PubMed  Google Scholar 

  • Moolamalla, S. T. R., Balasubramanian, R., Chauhan, R., Priyakumar, U. D. & Vinod, P. K. Host metabolic reprogramming in response to SARS-CoV-2 infection: a systems biology approach. Micro. Pathog. 158, 105114 (2021).

    Article  CAS  Google Scholar 

  • Shen, T. & Wang, T. Metabolic reprogramming in COVID-19. Int J. Mol. Sci. 22, 11475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefano, G. B., Ptacek, R., Ptackova, H., Martin, A. & Kream, R. M. Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival. Med Sci. Monit. 27, e930886 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta, S., Das, N. & Mukherjee, P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA viruses. Front Microbiol 11, 1990 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunn, A. V. W., Guy, G. W., Brysch, W. & Bell, J. D. Understanding long COVID; mitochondrial health and adaptation-old pathways, new problems. Biomedicines 10, 3113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnweber, T. et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir. Res. 21, 276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessling-Resnick, M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu. Rev. Nutr. 38, 431–458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavezzi, A., Troiani, E. & Corrao, S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. a narrative review. Clin. Pr. 10, 1271 (2020).

    Article  Google Scholar 

  • Wenzhong, L. & Hualan, L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system. Autoimmunity 54, 213–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Lechuga, G. C. et al. SARS-CoV-2 proteins bind to hemoglobin and its metabolites. Int J. Mol. Sci. 22, 9035 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radzikowska, U. et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 75, 2829–2845 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Taneri, P. E. et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur. J. Epidemiol. 35, 763–773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, Y. et al. SARS CoV-2 aggravates cellular metabolism mediated complications in COVID-19 infection. Dermatol. Ther. 33, e13871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Pastora, J. et al. Hyperferritinemia in critically ill COVID-19 patients—Is ferritin the product of inflammation or a pathogenic mediator? Clin. Chim. Acta 509, 249–251 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Z. et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J. Infect. Dis. 95, 332–339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Jiang, J., Fu, N. & Chen, L. Targetting ferroptosis for blood cell-related diseases. J. Drug Target 30, 244–258 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Handy, D. E. & Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal 16, 1323–1367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koklesova, L. et al. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J. 12, 27–40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shang, C. et al. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol 12, 780768 (2021).

    Article  PubMed  Google Scholar 

  • Romão, P. R. et al. Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection. Int. Immunopharmacol. 108, 108697 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, N. K. & Sarode, S. C. Do compromised mitochondria aggravate severity and fatality by SARS-CoV-2? Curr. Med. Res. Opin. 38, 911–916 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Soria-Castro, E. et al. The kidnapping of mitochondrial function associated with the SARS-CoV-2 infection. Histol. Histopathol. 36, 947–965 (2021).

    CAS  PubMed  Google Scholar 

  • Turton, N., Millichap, L. & Hargreaves, I. P. Potential biomarkers of mitochondrial dysfunction associated with COVID-19 infection. Adv. Exp. Med. Biol. 1412, 211–224 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Singh, K. K., Chaubey, G., Chen, J. Y. & Suravajhala, P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319, C258–C267 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Valenzuela, R. et al. An ACE2/Mas-related receptor MrgE axis in dopaminergic neuron mitochondria. Redox Biol. 46, 102078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdés-Aguayo, J. J. et al. Mitochondria and mitochondrial DNA: key elements in the pathogenesis and exacerbation of the inflammatory state caused by COVID-19. Med. (Kaunas.) 57, 928 (2021).

    Google Scholar 

  • Costa, T. J. et al. Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vasc. Pharm. 142, 106946 (2022).

    Article  CAS  Google Scholar 

  • de Las Heras, N., Martín Giménez, V. M., Ferder, L., Manucha, W. & Lahera, V. Implications of oxidative stress and potential role of mitochondrial dysfunction in COVID-19: therapeutic effects of vitamin D. Antioxid. (Basel) 9, 897 (2020).

    Article  Google Scholar 

  • Mo, Y. et al. Mitochondrial dysfunction associates with acute T lymphocytopenia and impaired functionality in COVID-19 patients. Front Immunol. 12, 799896 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Saleh, J., Peyssonnaux, C., Singh, K. K. & Edeas, M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 54, 1–7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough, E. et al. Mitochondrial dynamics in SARS-COV2 spike protein treated human microglia: implications for neuro-COVID. J. Neuroimmune Pharm. 16, 770–784 (2021).

    Article  Google Scholar 

  • Pliss, A., Kuzmin, A. N., Prasad, P. N. & Mahajan, S. D. Mitochondrial dysfunction: a prelude to neuropathogenesis of SARS-CoV-2. ACS Chem. Neurosci. 13, 308–312 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Naidu, S. A. G., Wallace, T. C., Davies, K. J. A. & Naidu, A. S. Lactoferrin for mental health: neuro-redox regulation and neuroprotective effects across the blood-brain barrier with special reference to neuro-COVID-19. J. Diet. Suppl. 20, 218–253 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Gibellini, L. et al. Altered bioenergetics and mitochondrial dysfunction of monocytes in patients with COVID-19 pneumonia. EMBO Mol. Med. 12, e13001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guntur, V. P. et al. Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites 12, 1026 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, T.-H., Chang, C.-J. & Hung, P.-H. Possible pathogenesis and prevention of long COVID: SARS-CoV-2-induced mitochondrial disorder. Int J. Mol. Sci. 24, 8034 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCully, K. S. Review: chemical pathology of homocysteine VI. Aging, cellular senescence, and mitochondrial dysfunction. Ann. Clin. Lab Sci. 48, 677–687 (2018).

    CAS  PubMed  Google Scholar 

  • Shenoy, S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm. Res. 69, 1077–1085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno Fernández-Ayala, D. J., Navas, P. & López-Lluch, G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp. Gerontol. 142, 111147 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Alfarouk, K. O. et al. Of mitochondrion and COVID-19. J. Enzym. Inhib. Med. Chem. 36, 1258–1267 (2021).

    Article  CAS  Google Scholar 

  • Betteridge, D. J. What is oxidative stress? Metabolism 49, 3–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galaris, D., Barbouti, A. & Pantopoulos, K. Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys. Acta Mol. Cell Res. 1866, 118535 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Vollbracht, C. & Kraft, K. Oxidative stress and hyper-inflammation as major drivers of severe COVID-19 and Long COVID: implications for the benefit of high-dose intravenous vitamin C. Front. Pharm. 13, 899198 (2022).

    Article  CAS  Google Scholar 

  • De la Cruz-Enríquez, J., Rojas-Morales, E., Ruíz-García, M. G., Tobón-Velasco, J. C. & Jiménez-Ortega, J. C. SARS-CoV-2 induces mitochondrial dysfunction and cell death by oxidative stress/inflammation in leukocytes of COVID-19 patients. Free Radic. Res. 55, 982–995 (2021).

    Article  PubMed  Google Scholar 

  • Chang, R., Mamun, A., Dominic, A. & Le, N.-T. SARS-CoV-2 mediated endothelial dysfunction: the potential role of chronic oxidative stress. Front. Physiol. 11, 605908 (2020).

    Article  PubMed  Google Scholar 

  • Lopez-Leon, S. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep. 11, 16144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuki, K., Fujiogi, M. & Koutsogiannaki, S. COVID-19 pathophysiology: a review. Clin. Immunol. 215, 108427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gremese, E. & Ferraccioli, G. The pathogenesis of microthrombi in COVID-19 cannot be controlled by DOAC: NETosis should be the target. J. Intern. Med. 289, 420–421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo, X. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 55, 2001217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, B., Brady, W. J., Koyfman, A. & Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 38, 1504–1507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moody, W. E. et al. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study. J. Am. Soc. Echocardiogr. 34, 562–566 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Carfì, A., Bernabei, R. & Landi, F., Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 324, 603–605 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman, B., Bluemke, D. A., Lüscher, T. F. & Neubauer, S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 43, 1157–1172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savelieff, M. G., Feldman, E. L. & Stino, A. M. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiol. Dis. 168, 105715 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hingorani, K. S., Bhadola, S. & Cervantes-Arslanian, A. M. COVID-19 and the brain. Trends Cardiovasc. Med. 32, 323–330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theoharides, T. C. & Kempuraj, D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of neuro-COVID. Cells 12, 688 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu, A. S. & Clemens, R. A. No smell, no taste—dealing with a “senseless” phase of the pandemic: nutritional management of COVID-19 and postacute sequelae of COVID-19. Nutr. Today 57, 309–316 (2022).

    Article  Google Scholar 

  • Fisicaro, F. et al. Neurological sequelae in patients with COVID-19: a histopathological perspective. Int J. Environ. Res. Public Health 18, 1415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelpi, E. et al. Multifactorial white matter damage in the acute phase and pre-existing conditions may drive cognitive dysfunction after SARS-CoV-2 infection: neuropathology-based evidence. Viruses 15, 908 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premraj, L. et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J. Neurol. Sci. 434, 120162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, E., Xie, Y. & Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 14, 983 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira, G. L. V., Oliveira, C. N. S., Pinzan, C. F., de Salis, L. V. V. & de B Cardoso, C. R. Microbiota modulation of the gut-lung axis in COVID-19. Front. Immunol. 12, 635471 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadi Badi, S. et al. From the role of microbiota in gut-lung axis to SARS-CoV-2 pathogenesis. Mediators Inflamm. 2021, 6611222 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumlertgul, N. et al. Acute kidney injury prevalence, progression and long-term outcomes in critically ill patients with COVID-19: a cohort study. Ann. Intensive Care 11, 123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda, K. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 121, 953–959 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Sturm, G. et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun. Biol. 6, 22 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carruthers, B. M. et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 270, 327–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstock, L. B. et al. Mast cell activation symptoms are prevalent in Long-COVID. Int J. Infect. Dis. 112, 217–226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam, M. S., Wang, Z., Abdel-Mohsen, M., Chen, X. & Montaner, L. J. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J. Leukoc. Biol. 113, 236–254 (2023).

    Article  PubMed  Google Scholar 

  • Diao, B. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar, B. et al. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 55, 542–556.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vibholm, L. K. et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine 64, 103230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F. et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis. 221, 1762–1769 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Bautista-Becerril, B. et al. Immunothrombosis in COVID-19: implications of neutrophil extracellular traps. Biomolecules 11, 694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261.e27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamanickam, A. et al. Dynamic alterations in monocyte numbers, subset frequencies and activation markers in acute and convalescent COVID-19 individuals. Sci. Rep. 11, 20254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, N. A. et al. Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. Eur. Respir. J. 61, 2202226 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coperchini, F. et al. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Grow

  • Similar news
    News Archive
    • Japan vs South Africa
      Japan vs South Africa
      Rugby World Cup: Wales edge France and South Africa beat Japan – video highlights
      20 Oct 2019
      13
    • Train wheel
      Train wheel
      Rail Wheels Sets Market Upcoming Trends, Segmented by Type, Application, End-User and Region -GHH ...
      19 May 2022
      2
    • Lukaku
      Lukaku
      Romelu Lukaku will be haunted by Champions League final miss ...
      11 Jun 2023
      6
    • Tokina
      Tokina
      Cinema Lenses Market Forecast, Manufacture Size, Developments and Future Scope To 2024
      29 Nov 2019
      2
    • NYSEPNR
      NYSE:PNR
      Pinnacle Associates Ltd. Has $737000 Holdings in Pentair plc (NYSE:PNR)
      4 Apr 2024
      1
    This week's most popular news