Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID ...
Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rajan, S. et al. In the wake of the pandemic: Preparing for long covid [internet]. National Center for Biotechnology Information Available at: https://pubmed.ncbi.nlm.nih.gov/33877759/ (Accessed: 27th March 2024).
Coronavirus cases: Worldometer Available at: https://www.worldometers.info/coronavirus/ (Accessed: 27th March 2024).
Hallek, M. et al. Post-COVID syndrome. Dtsch. Arztebl. Int. 120, 48–55 (2023).
PubMed PubMed Central Google Scholar
Davis, H. E. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38, 101019 (2021).
Article PubMed PubMed Central Google Scholar
Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).
Article CAS PubMed PubMed Central Google Scholar
Bornstein, S. R. et al. Long-COVID, metabolic and endocrine disease. Horm. Metab. Res. 54, 562–566 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xie, Y. & Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 10, 311–321 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kedor, C. et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat. Commun. 13, 5104 (2022).
Article CAS PubMed PubMed Central Google Scholar
Larsen, N. W. et al. Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Front. Neurol. 13, 1012668 (2022).
Article PubMed PubMed Central Google Scholar
Kim, S. H. et al. New-onset diabetes after COVID-19. J. Clin. Endocrinol. Metab. 108, e1164–e1174 (2023).
Article PubMed Google Scholar
Lopez, C., Kim, J., Pandey, A., Huang, T. & DeLoughery, T. G. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br. J. Haematol. 190, 31–32 (2020).
Article CAS PubMed PubMed Central Google Scholar
Demko, Z. et al. Post-acute sequelae of SARS-COV-2 (PASC) impact quality of life at 6, 12 and 18 months post-infection. https://doi.org/10.1101/2022.08.08.22278543 (2022).
Liu, X. et al. SARS-CoV-2-host proteome interactions for antiviral drug discovery. Mol. Syst. Biol. 17, e10396 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y. et al. In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nat. Commun. 12, 5695 (2021).
Article CAS PubMed PubMed Central Google Scholar
Warburton, P. E. & Sebra, R. P. Long-read DNA sequencing: recent advances and remaining challenges. Annu. Rev. Genom. Hum. Genet 24, 109–132 (2023).
Article CAS Google Scholar
Banerjee, A. K. et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell 183, 1325–1339.e21 (2020).
Article CAS PubMed PubMed Central Google Scholar
Li, J. et al. Virus-host interactome and proteomic survey reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. Med 2, 99–112.e7 (2021).
Article CAS PubMed Google Scholar
Yang, S. L. et al. Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions. Nat. Commun. 12, 5113 (2021).
Article CAS PubMed PubMed Central Google Scholar
Chen, Z. et al. Interactomes of SARS-CoV-2 and human coronaviruses reveal host factors potentially affecting pathogenesis. EMBO J. 40, e107776 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, T. et al. COVID-19 metabolism: mechanisms and therapeutic targets. MedComm 3, e157 (2022).
Article CAS PubMed PubMed Central Google Scholar
Naidu, A. S. et al. SARS-COV-2-induced host metabolic reprogram (HMR): Nutritional Interventions for Global Management of COVID-19 and post-acute sequelae of covid-19 (PASC). J. Food Bioactives 18, (2022).
Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gussow, A. B. et al. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc. Natl Acad. Sci. USA 117, 15193–15199 (2020).
Article CAS PubMed PubMed Central Google Scholar
Li, J., Lai, S., Gao, G. F. & Shi, W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 600, 408–418 (2021).
Article CAS PubMed Google Scholar
Sicari, D., Chatziioannou, A., Koutsandreas, T., Sitia, R. & Chevet, E. Role of the early secretory pathway in SARS-CoV-2 infection. J. Cell Biol. 219, e202006005 (2020).
Article CAS PubMed PubMed Central Google Scholar
Naidu, S. A. G., Clemens, R. A. & Naidu, A. S. SARS-CoV-2 infection dysregulates host iron (Fe)-redox homeostasis (Fe-R-H): role of Fe-redox regulators, ferroptosis inhibitors, anticoagulants, and iron-chelators in COVID-19 control. J. Diet. Suppl. 20, 312–371 (2023).
Article CAS PubMed Google Scholar
Turner, S. et al. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 34, 321–344 (2023).
Article CAS PubMed PubMed Central Google Scholar
Bai, C., Zhong, Q. & Gao, G. F. Overview of SARS-CoV-2 genome-encoded proteins. Sci. China Life Sci. 65, 280–294 (2022).
Article CAS PubMed Google Scholar
Jin, Y. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 12, 372 (2020).
Article CAS PubMed PubMed Central Google Scholar
O’Donoghue, S. I. et al. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol. Syst. Biol. 17, e10079 (2021).
Article PubMed PubMed Central Google Scholar
Lee, S. et al. The SARS-CoV-2 RNA interactome. Mol. Cell 81, 2838–2850.e6 (2021).
Article CAS PubMed PubMed Central Google Scholar
Simeoni, M., Cavinato, T., Rodriguez, D. & Gatfield, D. I(nsp1)ecting SARS-CoV-2-ribosome interactions. Commun. Biol. 4, 715 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhou, Y. et al. A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat. Biotechnol. 41, 128–139 (2023).
Article PubMed Google Scholar
Kee, J. et al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 610, 381–388 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wang, B. et al. Allosteric activation of SARS-CoV-2 RNA-dependent RNA polymerase by remdesivir triphosphate and other phosphorylated nucleotides. mBio 12, e0142321 (2021).
Article PubMed Google Scholar
Zhang, Y. et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat. Commun. 12, 1676 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ripoli, M. et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J. Virol. 84, 647–660 (2010).
Article CAS PubMed Google Scholar
Bera, S. C. et al. The nucleotide addition cycle of the SARS-CoV-2 polymerase. Cell Rep. 36, 109650 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dias, S. S. G. et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 16, e1009127 (2020).
Article CAS PubMed PubMed Central Google Scholar
Casari, I., Manfredi, M., Metharom, P. & Falasca, M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog. Lipid Res. 82, 101092 (2021).
Article CAS PubMed PubMed Central Google Scholar
Santos-Beneit, F., Raškevičius, V., Skeberdis, V. A. & Bordel, S. A metabolic modeling approach reveals promising therapeutic targets and antiviral drugs to combat COVID-19. Sci. Rep. 11, 11982 (2021).
Article CAS PubMed PubMed Central Google Scholar
Nardacci, R. et al. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis. 12, 263 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ebrahimi, K. H. & McCullagh, J. S. O. A lipidomic view of SARS-CoV-2. Biosci. Rep. 41, BSR20210953 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hooper, P. L. COVID-19 and heme oxygenase: novel insight into the disease and potential therapies. Cell Stress Chaperones 25, 707–710 (2020).
Article CAS PubMed PubMed Central Google Scholar
Singh, D., Wasan, H. & Reeta, K. H. Heme oxygenase-1 modulation: a potential therapeutic target for COVID-19 and associated complications. Free Radic. Biol. Med. 161, 263–271 (2020).
Article CAS PubMed PubMed Central Google Scholar
Espinoza, J. A., González, P. A. & Kalergis, A. M. Modulation of antiviral immunity by heme oxygenase-1. Am. J. Pathol. 187, 487–493 (2017).
Article CAS PubMed Google Scholar
Paul, B. D., Lemle, M. D., Komaroff, A. L. & Snyder, S. H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl Acad. Sci. USA 118, e2024358118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kaundal, R. K., Kalvala, A. K. & Kumar, A. Neurological implications of COVID-19: role of redox imbalance and mitochondrial dysfunction. Mol. Neurobiol. 58, 4575–4587 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y.-P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304–1320 (2014).
CAS PubMed PubMed Central Google Scholar
Thomas, T. et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J. Proteome Res. 19, 4455–4469 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wong, H. T., Cheung, V. & Salamango, D. J. Decoupling SARS-CoV-2 ORF6 localization and interferon antagonism. J. Cell Sci. 135, jcs259666 (2022).
Article CAS PubMed Google Scholar
Zhang, S., Wang, J., Wang, L., Aliyari, S. & Cheng, G. SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Cell Mol. Immunol. 19, 872–882 (2022).
Article CAS PubMed PubMed Central Google Scholar
Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784.e5 (2020).
Article CAS PubMed PubMed Central Google Scholar
Evans, J. P. & Liu, S.-L. Role of host factors in SARS-CoV-2 entry. J. Biol. Chem. 297, 100847 (2021).
Article CAS PubMed PubMed Central Google Scholar
Xia, S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343–355 (2020).
Article CAS PubMed PubMed Central Google Scholar
Peng, R., Wu, L.-A., Wang, Q., Qi, J. & Gao, G. F. Cell entry by SARS-CoV-2. Trends Biochem Sci. 46, 848–860 (2021).
Article CAS PubMed PubMed Central Google Scholar
Szabo, R. & Bugge, T. H. Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu. Rev. Cell Dev. Biol. 27, 213–235 (2011).
Article CAS PubMed PubMed Central Google Scholar
Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016–1035.e19 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gadanec, L. K. et al. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J. Mol. Sci. 22, 992 (2021).
Article CAS PubMed PubMed Central Google Scholar
Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861–865 (2020).
Article CAS PubMed PubMed Central Google Scholar
Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).
Article CAS PubMed PubMed Central Google Scholar
Li, Z.-L. & Buck, M. Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of Spike protein S1 and S2. Biophys. J. 120, 2828–2837 (2021).
Article CAS PubMed PubMed Central Google Scholar
Peacock, T. P. et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol 6, 899–909 (2021).
Article CAS PubMed Google Scholar
Zhang, L. et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc. Natl Acad. Sci. USA 118, e2109905118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Whittaker, G. R., Daniel, S. & Millet, J. K. Coronavirus entry: how we arrived at SARS-CoV-2. Curr. Opin. Virol. 47, 113–120 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ragia, G. & Manolopoulos, V. G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharm. 76, 1623–1630 (2020).
Article CAS Google Scholar
Benton, D. J. et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327–330 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rahbar Saadat, Y., Hosseiniyan Khatibi, S. M., Zununi Vahed, S. & Ardalan, M. Host serine proteases: a potential targeted therapy for COVID-19 and influenza. Front Mol. Biosci. 8, 725528 (2021).
Article PubMed PubMed Central Google Scholar
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6 (2020).
Article CAS PubMed PubMed Central Google Scholar
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).
Article CAS PubMed PubMed Central Google Scholar
Essalmani, R. et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity. J. Virol. 96, e0012822 (2022).
Article PubMed Google Scholar
Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).
Article CAS PubMed Google Scholar
Vankadari, N. Structure of furin protease binding to SARS-CoV-2 spike glycoprotein and implications for potential targets and virulence. J. Phys. Chem. Lett. 11, 6655–6663 (2020).
Article CAS PubMed Google Scholar
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
Article CAS PubMed PubMed Central Google Scholar
Limburg, H. et al. TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes. J. Virol. 93, e00649–19 (2019).
Article PubMed PubMed Central Google Scholar
Zhao, M.-M. et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target Ther. 6, 134 (2021).
Article CAS PubMed PubMed Central Google Scholar
van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020).
Article PubMed Google Scholar
Sender, R. et al. The total number and mass of SARS-CoV-2 virions. Proc. Natl Acad. Sci. USA 118, e2024815118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Folgueira, M. D., Luczkowiak, J., Lasala, F., Pérez-Rivilla, A. & Delgado, R. Prolonged SARS-CoV-2 cell culture replication in respiratory samples from patients with severe COVID-19. Clin. Microbiol. Infect. 27, 886–891 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sun, J. et al. The kinetics of viral load and antibodies to SARS-CoV-2. Clin. Microbiol. Infect. 26, 1690.e1–1690.e4 (2020).
Article CAS PubMed Google Scholar
Wong, D. W. L. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells 10, 1900 (2021).
Article CAS PubMed PubMed Central Google Scholar
Caceres, P. S. et al. High SARS-CoV-2 viral load in urine sediment correlates with acute kidney injury and poor COVID-19 outcome. J. Am. Soc. Nephrol. 32, 2517–2528 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ni, W. et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 24, 422 (2020).
Article PubMed PubMed Central Google Scholar
Obach, M. et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. 279, 53562–53570 (2004).
Article CAS PubMed Google Scholar
Palsson-McDermott, E. M. & O’Neill, L. A. J. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays 35, 965–973 (2013).
Article CAS PubMed Google Scholar
Ferraro, E., Germanò, M., Mollace, R., Mollace, V. & Malara, N. HIF-1, the Warburg effect, and macrophage/microglia polarization potential role in COVID-19 pathogenesis. Oxid. Med. Cell Longev. 2021, 8841911 (2021).
Article PubMed PubMed Central Google Scholar
Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020).
Article CAS PubMed Google Scholar
Mehrzadi, S., Karimi, M. Y., Fatemi, A., Reiter, R. J. & Hosseinzadeh, A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharm. Ther. 224, 107825 (2021).
Article CAS Google Scholar
Jahani, M., Dokaneheifard, S. & Mansouri, K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J. Inflamm. (Lond.) 17, 33 (2020).
Article CAS PubMed Google Scholar
Marchetti, M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann. Hematol. 99, 1701–1707 (2020).
Article CAS PubMed PubMed Central Google Scholar
Debuc, B. & Smadja, D. M. Is COVID-19 a new hematologic disease? Stem Cell Rev. Rep. 17, 4–8 (2021).
Article CAS PubMed Google Scholar
Edeas, M., Saleh, J. & Peyssonnaux, C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int. J. Infect. Dis. 97, 303–305 (2020).
Article CAS PubMed PubMed Central Google Scholar
Le Lan, C. et al. Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood 105, 4527–4531 (2005).
Article PubMed Google Scholar
Bellmann-Weiler, R. et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 Infection. J. Clin. Med 9, 2429 (2020).
Article CAS PubMed PubMed Central Google Scholar
Ye, Q., Wang, B. & Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 80, 607–613 (2020).
Article CAS PubMed PubMed Central Google Scholar
Muhoberac, B. B. What can cellular redox, iron, and reactive oxygen species suggest about the mechanisms and potential therapy of COVID-19? Front. Cell Infect. Microbiol. 10, 569709 (2020).
Article PubMed PubMed Central Google Scholar
Tang, N. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 18, 1094–1099 (2020).
Article CAS PubMed PubMed Central Google Scholar
Jankun, J., Landeta, P., Pretorius, E., Skrzypczak-Jankun, E. & Lipinski, B. Unusual clotting dynamics of plasma supplemented with iron(III). Int J. Mol. Med. 33, 367–372 (2014).
Article CAS PubMed Google Scholar
Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).
Article CAS PubMed PubMed Central Google Scholar
Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).
Article CAS PubMed PubMed Central Google Scholar
Sun, D.-W. et al. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: a sentinel? Clin. Chim. Acta 508, 122–129 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bergamaschi, G. et al. Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin. Exp. Med. 21, 239–246 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wagener, F. A. D. T. G., Pickkers, P., Peterson, S. J., Immenschuh, S. & Abraham, N. G. Targeting the heme-heme oxygenase system to prevent severe complications following COVID-19 infections. Antioxid. (Basel) 9, 540 (2020).
Article CAS Google Scholar
Cheng, C. et al. The incubation period of COVID-19: a global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients. Infect. Dis. Poverty 10, 119 (2021).
Article PubMed PubMed Central Google Scholar
Lauer, S. A. et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med .172, 577–582 (2020).
Article PubMed Google Scholar
Wu, Y. et al. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis. JAMA Netw. Open 5, e2228008 (2022).
Article PubMed PubMed Central Google Scholar
Samrah, S. M. et al. Viral clearance course of COVID-19 outbreaks. J. Multidiscip. Health 14, 555–565 (2021).
Article Google Scholar
Hirai, N. et al. Factors associated with viral clearance periods from patients with COVID-19: a retrospective observational cohort study. J. Infect. Chemother. 27, 864–868 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).
Article CAS PubMed Google Scholar
Yang, M. & Lai, C. L. SARS-CoV-2 infection: can ferroptosis be a potential treatment target for multiple organ involvement? Cell Death Discov. 6, 130 (2020).
Article CAS PubMed PubMed Central Google Scholar
Cheung, K. S. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a hong kong cohort: systematic review and meta-analysis. Gastroenterology 159, 81–95 (2020).
Article CAS PubMed Google Scholar
Mao, L. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020).
Article PubMed Google Scholar
Morris, A. Effects of pancreatic SARS-CoV-2 infection identified. Nat. Rev. Endocrinol. 17, 192 (2021).
Article CAS PubMed PubMed Central Google Scholar
di Filippo, L., Doga, M., Frara, S. & Giustina, A. Hypocalcemia in COVID-19: prevalence, clinical significance and therapeutic implications. Rev. Endocr. Metab. Disord. 23, 299–308 (2022).
Article PubMed Google Scholar
Deodatus, J. A. et al. Lower plasma calcium associated with COVID-19, but not with disease severity: a two-centre retrospective cohort study. Infect. Dis. (Lond.) 54, 90–98 (2022).
Article CAS PubMed Google Scholar
Alayash, A. I. The impact of COVID-19 infection on oxygen homeostasis: a molecular perspective. Front. Physiol. 12, 711976 (2021).
Article PubMed PubMed Central Google Scholar
Zhang, P. et al. Ectopic expression of SARS-CoV-2 S and ORF-9B proteins alters metabolic profiles and impairs contractile function in cardiomyocytes. Front. Cell Dev. Biol. 11, 1110271 (2023).
Article PubMed PubMed Central Google Scholar
Hugon, J. Long COVID: does SARS-CoV-2 induce lingering brain lesions? Eur. J. Neurol. 30, 1165–1166 (2023).
Article PubMed Google Scholar
Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and multiorgan response. Curr. Probl. Cardiol. 45, 100618 (2020).
Article PubMed PubMed Central Google Scholar
Yelin, D. et al. Long-term consequences of COVID-19: research needs. Lancet Infect. Dis. 20, 1115–1117 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zhang, H. et al. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat. Med. 29, 226–235 (2023).
Article CAS PubMed Google Scholar
Chen, C. et al. Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long COVID: a meta-analysis and systematic review. J. Infect. Dis. 226, 1593–1607 (2022).
Article CAS PubMed Google Scholar
Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ayoubkhani, D. et al. Risk of long COVID in people infected with severe acute respiratory syndrome coronavirus 2 after 2 doses of a coronavirus disease 2019 vaccine: community-based, matched cohort study. Open Forum Infect. Dis. 9, ofac464 (2022).
Article PubMed PubMed Central Google Scholar
Nalbandian, A., Desai, A. D. & Wan, E. Y. Post-COVID-19 condition. Annu. Rev. Med. 74, 55–64 (2023).
Article CAS PubMed Google Scholar
Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).
Article CAS PubMed PubMed Central Google Scholar
Thaweethai, T. et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 329, 1934 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sudre, C. H. et al. Attributes and predictors of long COVID. Nat. Med. 27, 626–631 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yong, S. J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond.) 53, 737–754 (2021).
Article CAS PubMed Google Scholar
Fernandez, M. et al. Spinal manipulation for the management of cervicogenic headache: a systematic review and meta-analysis. Eur. J. Pain. 24, 1687–1702 (2020).
Article PubMed Google Scholar
Garrigues, E. et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 81, e4–e6 (2020).
Article CAS PubMed PubMed Central Google Scholar
Stavem, K., Ghanima, W., Olsen, M. K., Gilboe, H. M. & Einvik, G. Persistent symptoms 1.5-6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax 76, 405–407 (2021).
Article PubMed Google Scholar
Lai, C.-C. et al. Long COVID: An inevitable sequela of SARS-CoV-2 infection. J. Microbiol. Immunol. Infect. 56, 1–9 (2023).
Article PubMed Google Scholar
Mizrahi, B. et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study. BMJ 380, e072529 (2023).
Article PubMed Google Scholar
Koc, H. C., Xiao, J., Liu, W., Li, Y. & Chen, G. Long COVID and its management. Int J. Biol. Sci. 18, 4768–4780 (2022).
Article CAS PubMed PubMed Central Google Scholar
Crook, H., Raza, S., Nowell, J., Young, M. & Edison, P. Long covid-mechanisms, risk factors, and management. BMJ 374, n1648 (2021).
Article PubMed Google Scholar
Moolamalla, S. T. R., Balasubramanian, R., Chauhan, R., Priyakumar, U. D. & Vinod, P. K. Host metabolic reprogramming in response to SARS-CoV-2 infection: a systems biology approach. Micro. Pathog. 158, 105114 (2021).
Article CAS Google Scholar
Shen, T. & Wang, T. Metabolic reprogramming in COVID-19. Int J. Mol. Sci. 22, 11475 (2021).
Article CAS PubMed PubMed Central Google Scholar
Stefano, G. B., Ptacek, R., Ptackova, H., Martin, A. & Kream, R. M. Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival. Med Sci. Monit. 27, e930886 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dutta, S., Das, N. & Mukherjee, P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA viruses. Front Microbiol 11, 1990 (2020).
Article PubMed PubMed Central Google Scholar
Nunn, A. V. W., Guy, G. W., Brysch, W. & Bell, J. D. Understanding long COVID; mitochondrial health and adaptation-old pathways, new problems. Biomedicines 10, 3113 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sonnweber, T. et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir. Res. 21, 276 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wessling-Resnick, M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu. Rev. Nutr. 38, 431–458 (2018).
Article CAS PubMed PubMed Central Google Scholar
Cavezzi, A., Troiani, E. & Corrao, S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. a narrative review. Clin. Pr. 10, 1271 (2020).
Article Google Scholar
Wenzhong, L. & Hualan, L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system. Autoimmunity 54, 213–224 (2021).
Article CAS PubMed Google Scholar
Lechuga, G. C. et al. SARS-CoV-2 proteins bind to hemoglobin and its metabolites. Int J. Mol. Sci. 22, 9035 (2021).
Article CAS PubMed PubMed Central Google Scholar
Radzikowska, U. et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 75, 2829–2845 (2020).
Article CAS PubMed Google Scholar
Taneri, P. E. et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur. J. Epidemiol. 35, 763–773 (2020).
Article CAS PubMed PubMed Central Google Scholar
Singh, Y. et al. SARS CoV-2 aggravates cellular metabolism mediated complications in COVID-19 infection. Dermatol. Ther. 33, e13871 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gómez-Pastora, J. et al. Hyperferritinemia in critically ill COVID-19 patients—Is ferritin the product of inflammation or a pathogenic mediator? Clin. Chim. Acta 509, 249–251 (2020).
Article PubMed PubMed Central Google Scholar
Zhu, Z. et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J. Infect. Dis. 95, 332–339 (2020).
Article CAS PubMed PubMed Central Google Scholar
Chen, Z., Jiang, J., Fu, N. & Chen, L. Targetting ferroptosis for blood cell-related diseases. J. Drug Target 30, 244–258 (2022).
Article CAS PubMed Google Scholar
Handy, D. E. & Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal 16, 1323–1367 (2012).
Article CAS PubMed PubMed Central Google Scholar
Koklesova, L. et al. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J. 12, 27–40 (2021).
Article PubMed PubMed Central Google Scholar
Shang, C. et al. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol 12, 780768 (2021).
Article PubMed Google Scholar
Romão, P. R. et al. Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection. Int. Immunopharmacol. 108, 108697 (2022).
Article PubMed PubMed Central Google Scholar
Sharma, N. K. & Sarode, S. C. Do compromised mitochondria aggravate severity and fatality by SARS-CoV-2? Curr. Med. Res. Opin. 38, 911–916 (2022).
Article CAS PubMed Google Scholar
Soria-Castro, E. et al. The kidnapping of mitochondrial function associated with the SARS-CoV-2 infection. Histol. Histopathol. 36, 947–965 (2021).
CAS PubMed Google Scholar
Turton, N., Millichap, L. & Hargreaves, I. P. Potential biomarkers of mitochondrial dysfunction associated with COVID-19 infection. Adv. Exp. Med. Biol. 1412, 211–224 (2023).
Article CAS PubMed Google Scholar
Singh, K. K., Chaubey, G., Chen, J. Y. & Suravajhala, P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319, C258–C267 (2020).
Article PubMed PubMed Central Google Scholar
Valenzuela, R. et al. An ACE2/Mas-related receptor MrgE axis in dopaminergic neuron mitochondria. Redox Biol. 46, 102078 (2021).
Article CAS PubMed PubMed Central Google Scholar
Valdés-Aguayo, J. J. et al. Mitochondria and mitochondrial DNA: key elements in the pathogenesis and exacerbation of the inflammatory state caused by COVID-19. Med. (Kaunas.) 57, 928 (2021).
Google Scholar
Costa, T. J. et al. Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vasc. Pharm. 142, 106946 (2022).
Article CAS Google Scholar
de Las Heras, N., Martín Giménez, V. M., Ferder, L., Manucha, W. & Lahera, V. Implications of oxidative stress and potential role of mitochondrial dysfunction in COVID-19: therapeutic effects of vitamin D. Antioxid. (Basel) 9, 897 (2020).
Article Google Scholar
Mo, Y. et al. Mitochondrial dysfunction associates with acute T lymphocytopenia and impaired functionality in COVID-19 patients. Front Immunol. 12, 799896 (2021).
Article CAS PubMed Google Scholar
Saleh, J., Peyssonnaux, C., Singh, K. K. & Edeas, M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 54, 1–7 (2020).
Article CAS PubMed PubMed Central Google Scholar
Clough, E. et al. Mitochondrial dynamics in SARS-COV2 spike protein treated human microglia: implications for neuro-COVID. J. Neuroimmune Pharm. 16, 770–784 (2021).
Article Google Scholar
Pliss, A., Kuzmin, A. N., Prasad, P. N. & Mahajan, S. D. Mitochondrial dysfunction: a prelude to neuropathogenesis of SARS-CoV-2. ACS Chem. Neurosci. 13, 308–312 (2022).
Article CAS PubMed Google Scholar
Naidu, S. A. G., Wallace, T. C., Davies, K. J. A. & Naidu, A. S. Lactoferrin for mental health: neuro-redox regulation and neuroprotective effects across the blood-brain barrier with special reference to neuro-COVID-19. J. Diet. Suppl. 20, 218–253 (2023).
Article CAS PubMed Google Scholar
Gibellini, L. et al. Altered bioenergetics and mitochondrial dysfunction of monocytes in patients with COVID-19 pneumonia. EMBO Mol. Med. 12, e13001 (2020).
Article CAS PubMed PubMed Central Google Scholar
Guntur, V. P. et al. Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites 12, 1026 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chen, T.-H., Chang, C.-J. & Hung, P.-H. Possible pathogenesis and prevention of long COVID: SARS-CoV-2-induced mitochondrial disorder. Int J. Mol. Sci. 24, 8034 (2023).
Article CAS PubMed PubMed Central Google Scholar
McCully, K. S. Review: chemical pathology of homocysteine VI. Aging, cellular senescence, and mitochondrial dysfunction. Ann. Clin. Lab Sci. 48, 677–687 (2018).
CAS PubMed Google Scholar
Shenoy, S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm. Res. 69, 1077–1085 (2020).
Article CAS PubMed PubMed Central Google Scholar
Moreno Fernández-Ayala, D. J., Navas, P. & López-Lluch, G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp. Gerontol. 142, 111147 (2020).
Article PubMed PubMed Central Google Scholar
Alfarouk, K. O. et al. Of mitochondrion and COVID-19. J. Enzym. Inhib. Med. Chem. 36, 1258–1267 (2021).
Article CAS Google Scholar
Betteridge, D. J. What is oxidative stress? Metabolism 49, 3–8 (2000).
Article CAS PubMed Google Scholar
Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).
Article CAS PubMed PubMed Central Google Scholar
Galaris, D., Barbouti, A. & Pantopoulos, K. Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys. Acta Mol. Cell Res. 1866, 118535 (2019).
Article CAS PubMed Google Scholar
Vollbracht, C. & Kraft, K. Oxidative stress and hyper-inflammation as major drivers of severe COVID-19 and Long COVID: implications for the benefit of high-dose intravenous vitamin C. Front. Pharm. 13, 899198 (2022).
Article CAS Google Scholar
De la Cruz-Enríquez, J., Rojas-Morales, E., Ruíz-García, M. G., Tobón-Velasco, J. C. & Jiménez-Ortega, J. C. SARS-CoV-2 induces mitochondrial dysfunction and cell death by oxidative stress/inflammation in leukocytes of COVID-19 patients. Free Radic. Res. 55, 982–995 (2021).
Article PubMed Google Scholar
Chang, R., Mamun, A., Dominic, A. & Le, N.-T. SARS-CoV-2 mediated endothelial dysfunction: the potential role of chronic oxidative stress. Front. Physiol. 11, 605908 (2020).
Article PubMed Google Scholar
Lopez-Leon, S. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep. 11, 16144 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yuki, K., Fujiogi, M. & Koutsogiannaki, S. COVID-19 pathophysiology: a review. Clin. Immunol. 215, 108427 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gremese, E. & Ferraccioli, G. The pathogenesis of microthrombi in COVID-19 cannot be controlled by DOAC: NETosis should be the target. J. Intern. Med. 289, 420–421 (2021).
Article CAS PubMed PubMed Central Google Scholar
Mo, X. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 55, 2001217 (2020).
Article CAS PubMed PubMed Central Google Scholar
Long, B., Brady, W. J., Koyfman, A. & Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 38, 1504–1507 (2020).
Article PubMed PubMed Central Google Scholar
Moody, W. E. et al. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study. J. Am. Soc. Echocardiogr. 34, 562–566 (2021).
Article PubMed PubMed Central Google Scholar
Carfì, A., Bernabei, R. & Landi, F., Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 324, 603–605 (2020).
Article PubMed PubMed Central Google Scholar
Raman, B., Bluemke, D. A., Lüscher, T. F. & Neubauer, S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 43, 1157–1172 (2022).
Article CAS PubMed PubMed Central Google Scholar
Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232 (2021).
Article CAS PubMed PubMed Central Google Scholar
Savelieff, M. G., Feldman, E. L. & Stino, A. M. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiol. Dis. 168, 105715 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hingorani, K. S., Bhadola, S. & Cervantes-Arslanian, A. M. COVID-19 and the brain. Trends Cardiovasc. Med. 32, 323–330 (2022).
Article CAS PubMed PubMed Central Google Scholar
Theoharides, T. C. & Kempuraj, D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of neuro-COVID. Cells 12, 688 (2023).
Article CAS PubMed PubMed Central Google Scholar
Naidu, A. S. & Clemens, R. A. No smell, no taste—dealing with a “senseless” phase of the pandemic: nutritional management of COVID-19 and postacute sequelae of COVID-19. Nutr. Today 57, 309–316 (2022).
Article Google Scholar
Fisicaro, F. et al. Neurological sequelae in patients with COVID-19: a histopathological perspective. Int J. Environ. Res. Public Health 18, 1415 (2021).
Article CAS PubMed PubMed Central Google Scholar
Gelpi, E. et al. Multifactorial white matter damage in the acute phase and pre-existing conditions may drive cognitive dysfunction after SARS-CoV-2 infection: neuropathology-based evidence. Viruses 15, 908 (2023).
Article PubMed PubMed Central Google Scholar
Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).
Article CAS PubMed PubMed Central Google Scholar
Premraj, L. et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J. Neurol. Sci. 434, 120162 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xu, E., Xie, Y. & Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 14, 983 (2023).
Article CAS PubMed PubMed Central Google Scholar
de Oliveira, G. L. V., Oliveira, C. N. S., Pinzan, C. F., de Salis, L. V. V. & de B Cardoso, C. R. Microbiota modulation of the gut-lung axis in COVID-19. Front. Immunol. 12, 635471 (2021).
Article PubMed PubMed Central Google Scholar
Ahmadi Badi, S. et al. From the role of microbiota in gut-lung axis to SARS-CoV-2 pathogenesis. Mediators Inflamm. 2021, 6611222 (2021).
Article PubMed PubMed Central Google Scholar
Lumlertgul, N. et al. Acute kidney injury prevalence, progression and long-term outcomes in critically ill patients with COVID-19: a cohort study. Ann. Intensive Care 11, 123 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fukuda, K. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 121, 953–959 (1994).
Article CAS PubMed Google Scholar
Sturm, G. et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun. Biol. 6, 22 (2023).
Article CAS PubMed PubMed Central Google Scholar
Carruthers, B. M. et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 270, 327–338 (2011).
Article CAS PubMed PubMed Central Google Scholar
Weinstock, L. B. et al. Mast cell activation symptoms are prevalent in Long-COVID. Int J. Infect. Dis. 112, 217–226 (2021).
Article CAS PubMed PubMed Central Google Scholar
Islam, M. S., Wang, Z., Abdel-Mohsen, M., Chen, X. & Montaner, L. J. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J. Leukoc. Biol. 113, 236–254 (2023).
Article PubMed Google Scholar
Diao, B. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vijayakumar, B. et al. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 55, 542–556.e5 (2022).
Article CAS PubMed PubMed Central Google Scholar
Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).
Article CAS PubMed PubMed Central Google Scholar
Vibholm, L. K. et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine 64, 103230 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, F. et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis. 221, 1762–1769 (2020).
Article CAS PubMed Google Scholar
Bautista-Becerril, B. et al. Immunothrombosis in COVID-19: implications of neutrophil extracellular traps. Biomolecules 11, 694 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261.e27 (2021).
Article CAS PubMed PubMed Central Google Scholar
Rajamanickam, A. et al. Dynamic alterations in monocyte numbers, subset frequencies and activation markers in acute and convalescent COVID-19 individuals. Sci. Rep. 11, 20254 (2021).
Article CAS PubMed PubMed Central Google Scholar
Scott, N. A. et al. Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. Eur. Respir. J. 61, 2202226 (2023).
Article CAS PubMed PubMed Central Google Scholar
Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).
Article CAS PubMed PubMed Central Google Scholar
Coperchini, F. et al. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Grow